CONCLUSION QUESTIONS:
In answering these questions, refer to your graphs and explain how your conclusions are
drawn from them.

1) What trends do you notice in the SRT data? Comment on peaks, time intervals
 between peaks, relative size, etc.

2) How well does the SRT data match the Sagamore data in terms of trends?

3) Did you find a correlation between your SRT data and the number of sunspots? If
 so, what could this mean?
4) Use the sunspot data to determine the period of rotation of the sun. Explain your method and conclusion.

5) If possible, use the SRT and Sagamore data to determine the period of rotation of the sun. Explain how you determined the period of rotation and what value you found. Calculate a percent error using the Sagamore data as your theoretical value. Show all calculations.

6)
 a) How did the magnetometer data compare to the geomagnetic index or magnetic variation (Tromso) data?
b) Do you think that your magnetometer measurements were accurate readings of the magnetic field around the earth? If not, why? What should be changed to improve the measurements?

7) How do the magnetometer and Tromso data compare to the Sagamore and SRT data with respect to trends? Are there events that you can see with one set and not the other? Explain.

8) In answering the last question, did you notice that the peaks occurred on the same days, or was there a delay? What happened first: solar activity or magnetic changes? What can you conclude from this? Explain.
9) On what date(s) of this past month would you expect to see an aurora if you were at high latitudes? Explain. For extra credit, go on the internet and see if your prediction is correct.

10) What are some sources of error in this analysis? How would the sources of error affect your conclusions? Be specific and thorough in your error analysis.
11) Is using the SRT an effective way to study the sun? Describe its usefulness as well as limitations.

12) Write a conclusion statement that sums up the results of your data analysis.