Radio Astronomy Techniques

Preethi Pratap
MIT Haystack Observatory
Characteristics of radio signals

- Radio frequency range: 20 kHz-600 GHz, wavelengths: kms - 0.5mm
- Ignore photons - i.e. need not quantize EM field
- Rayleigh-Jeans approximation to Planck black body law
- At cm and mm wavelengths antenna structures are large compared to wavelength so use ray trace optics
- Most astronomical objects are at large distances and of small angular size. So the angles are a ratio of the linear size and the distance.
- Astronomical sources are large in physical size and the radiation emitted from them comes from a large number of statistically independent sources => resulting signals are noise-like - so spectra depend on the emission mechanism.
- Variation in sources is only on the light travel time scale

Implications for measurement techniques:
- One bit autocorrelation spectroscopy depends on signal voltage being a gaussian random variable
- Many hour interferometry depends on the source being stable over that time
Continuum Sources

Brightness of a blackbody at temperature T is given by

$$B_\mu(T) = \frac{2\hbar \mu^3}{c^2} \frac{1}{(e^{\hbar \mu/kT} - 1)}$$

Rayleigh-Jeans approximation ($\hbar \mu/kT \ll 1$) is almost always true in radio astronomy implies

$$B_\mu(T) = \frac{2\mu^2 kT}{c^2}$$

The thermal noise power per unit frequency interval from a resistor for the R-J approx. is

$$P_\mu = kT$$

This proportionality allows us to talk about intensities and power in temperature units.

Sources are typically “colored” - radiation temperatures vary with frequency - not necessarily related to physical temperatures.

e.g. Synchrotron emission source: $I_\mu \propto \mu^{-n}$ where n is related to the energy distribution of the emitting electrons

- typically $0.5 < n < 1$

Blackbody - $n = -2$

Can use R-J equation to define a brightness temperature that is proportional to intensity, T_b will be proportional to frequency
Atoms and Molecules: emission and absorption lines

Emission and absorption lines originate from atoms, molecules or small ions in a gaseous form. Molecular transitions are usually rotational (and sometimes vibrational).

Emission lines: Warm gas in front of a colder background so the intensity at line frequency is sharply higher compared to nearby frequencies.

Absorption lines: Cold gas in front of a warmer background source.

The brightness temperature at antenna is given by:

\[T_a = T_c e^{-\tau} + T_g (1 - e^{-\tau}) \]

where \(T_c \) is the background temperature, \(T_g \) is the temperature of the gas, and \(\tau \) is the opacity of the gas.
Doppler shifts and kinematics
Doppler shifts are very important in radio astronomy. Non-relativistic form is given by:

\[
\frac{\Delta \mu}{\mu} = -\frac{v}{c}
\]

where \(\Delta \mu\) is the change in frequency due to the Doppler velocity \(v\)

Line widths and line shapes are influenced by several mechanisms:
1. Natural line widths related to the lifetimes of the states involved in the transition
2. Kinematic temperatures characterizing small scale random motions of atoms or molecules
3. Turbulence or larger-scale random motions
4. Kinematics - large scale ordered motions such as expansions, contractions, rotations or outflows
Parabolic antennas - why?
Sources are so far away that incoming waves are plane waves from a specific direction. Need to catch as much energy from the source while avoiding local interference. Signal is characterized by a flux density in Janskys (1 Jy $= 10^{-26}$ w/m²/Hz) so the bigger the antenna the more watts we collect. A parabolic antenna puts all the energy at the focus where a feed (a small antenna which “feeds” radiated power to the main antenna - radar analogy) can be placed.

Aperture Efficiency and K/Jy
Black sphere with diameter d and temperature T at a distance r from a circular receiving antenna with diameter D. $r \gg d$ or D.
Power per unit frequency interval received by this antenna can be given by

$$P = I \left(\frac{od^2}{4} \right) \left(\frac{1}{r^2} \right) \left(\frac{OD^2}{4} \right)$$

The first 3 terms combine to make flux density F and the other term is the antenna collecting area.
If P is characterized in temperature units (=$2kT_R$), then $T_R/F = A/2k$ is the sensitivity.
Beam efficiency and Beam dilution

Beam efficiency is defined as the ratio of T_R to the brightness temperature of the source. However, it is a function of the shape and angular size of the source.

Beam dilution is defined the same way but for an assumed circular source with a specified diameter in beamwidths and as a function of this diameter. Can calibrate these quantities with planets - known brightness temperatures and angular sizes.

Beamwidth - $1.2\kappa/D$

Full width to half power of radiation pattern of a circular antenna. The 1.2 factor depends on feed illumination pattern.
Elements of a radio telescope

- Reflector - collects power, provides directionality
- Feed - couples the radiation to the transmission line
- Transmission line
- Receiver - filters and detects the emission
Reflector (Antenna)

- Reciprocity theorem
- Beamwidth $\eta = \kappa/D$
- Far-field response
- η also defines directivity
- Angular pattern of the electric field in the far field is the FT of the electric field distribution across the aperture
Most radio antennas have a Cassegrain design - feed horn is at the secondary since less of the surface will be blocked. Small telescopes such as the SRT have a prime focus arrangement.

Reflector surface must follow a parabola to a fraction of a wavelength. An imperfect surface scatters some signal away from the focus.
SRT antenna characteristics

- Diameter 2.1m
- Focal length - 32”
- F/D ratio - 0.38
- Four piece quad antenna from Kaul-Tronics Inc.
- Quad feed supports to ensure the feed is accurately centered at the focus
- C/Ku mesh - reflects waves where the holes are less than 1/10th of the wavelength
Picture of an SRT mounted on a trailer
SRT mount

- Fully automated AZ/EL mount constructed from two horizon to horizon mounts
- Controlled by a STAMP microprocessor
- Operates on 24-36 voltsDC at 2.5 amps and will move the antenna 150 degrees(set by limits switches) in 70-80 seconds
- Motor drives a large worm gear which drives a large sector gear attached to the antenna mounting ring.
Feeds

• Ideal feed - antenna with a uniform beam that illuminates only the reflector surface
• In practice - a good feed provides 60 - 70% efficiency
• SRT feed - probe in a circular waveguide surrounded by choke rings
• Beam of this feed - adjustable by choice of opening size and location of choke rings
• Beamwidth of an antenna with such a feed is $1.22\kappa/D$
Gain and Spillover

- Gain of an antenna relative to an ideal isotropic antenna is $G = 4\sigma A/\kappa^2$ where A is the effective collecting area.
- Gain is also related to the directivity - larger antenna, smaller beam, higher gain
- Antenna noise - from sky background, ohmic losses and ground pickup or spillover
- Losses and spillover - minimized by good antenna design
System noise contribution as a function of frequency
Receivers

- First stage - low noise amplifier (LNA)
- Noise performance given by $T_{sys} (K)$ provides direct comparison to source
- Heterodyne receivers - transforms the signal to lower frequency - mix SF from the LNA with local oscillator and filtering unwanted sidebands
- Square-law detector - produces output proportional to the square of the voltage
- Integrating signals improves the noise and the ability to detect extremely weak signals
- Analog signals from the detector are converted to digital - voltage to frequency converter followed by a counter
- Interference
SRT Receiver - block diagram
SRT Receiver

- First stage - LNA (also called pre-amp) provides a nominal 22 dB gain
- Image rejection mixers - pair of mixers with 90° quadrature phased L.O. drive followed by a 90° I.F. to make a single sideband receiver.
- 10 dB attenuation for observing strong sources like the sun
- Pair of IF amplifiers which provides 53 dB of gain and high/low pass filtering
- The conversion of the I.F. frequency voltage waveform to a voltage which is proportional to the I.F. signal power uses a back-diode or Schottky diode in the "squaring" region (square law detector)
SRT Analog Receiver

- Analog to digital converter - I.F. power is an analog signal which is converted to a pulse whose duration is inversely proportional to the average power present during the pulse period
- Local Oscillator synthesizer - allows frequency coverage to reach the OH line at 1665 MHz
- Serial communication
- Stamp communication
- Motor control
- More details on web page
SRT Digital Receiver

- Uses digital electronics
- Software spectrometer - no scanning needed
- Higher sensitivity, spectra in shorter time
- Currently uses same pre-amp as analog system which limits frequency to 1400-1440 MHz